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Abstract

Immersed boundary methods are used to account for the boundary conditions of solids in CFD

simulations by adding forcing functions to the Navier Stokes equations. The current imple-

mentation of IBMs with Dirichlet no-slip boundary conditions limit the formal accuracy of the

scheme to 2nd order. These implementations do not explicitly balance viscous forces and pres-

sure gradient at the boundary. The presence of the solid is account for by variations of velocity

only. By imposing a new surrogate source field within the simulation, and explicitly imposing

a balance between the pressure gradient and viscous forces at the boundaries of the solid, it

is expected that the order of accuracy will increase. This paper deals with the formulation of

the IBM problem with imposed surrogate sources, and resulting variations of pressure. It also

covers different methods that can be used to determine the surrogate source field. The numerical

implementation of these methods, and their limitations are also explained.

The implementation of the methods described in this report in a CFD code produces encour-

aging results, with small variations of pressure and velocity in the areas around the solid. The

order of accuracy of the IBM methods with equilibrium of pressure gradient and viscous forces

at the boundary still needs to be determined.
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Introduction

One of the objectives of fundamental turbulence research is to be able to capture all scales

of turbulence in Direct Numerical Simulations (DNS), whilst conserving acceptable calculation

times and accuracy. For this task, the Finite Difference Method (FDM) is commonly used for its

low dissipative and dispersive properties. In the case of simulations around complex structures,

body conformal grids must be used. This leads to cumbersome grid construction, deterioration

in grid quality, and can negatively impact convergence and calculation time [4]. The concept of

Immersed Boundary Methods (IBM) is to create a nonbody conformal cartesian grid. In other

words, the grid surface used to discretise the boundary of the solid is completely independent

from the cartesian grid used to discretise the simulation domain. To account for the effects of the

solid boundary, a forcing function is introduced in the Navier Stokes equations by imposing either

direct or indirect boundary condition. These methods currently limit themselves to verifying a

null velocity field in the solid and on the boundary. As such, they only offer a 2nd order formal

accuracy [5]. It is suspected that this limitation comes from the fact that the pressure gradient

is not explicitly set to balance viscous forces on the Boundary. Some argue that this balance

comes naturally from the imposition of the velocity field within the solid.

This report shows how the balance of the pressure gradient and viscous forces at the boundary

can be obtained explicitly. This is done through the introduction of a new surrogate source field.

The paper also explains the techniques used to determine the source field through methods based

on finite elements and Dirac distributions. It is hoped that the imposition of the pressure gradient

and viscous field balance will lead to an increase in the order of accuracy of the calculation.

The structure of the paper is as follows. The first chapter deals with the description of the

IBM problem, and the formulation of the expression that needs to be satisfied by the surrogate

source filed. The second chapter deals with techniques developed to find adequate surrogate

source fields which satisfy the set conditions for IBM. The third chapter considers the structure of

the numerical algorithm used to determine the surrogate source field, and underlined important

accuracy issues. Finally, the final chapter gives applied test cases of the algorithm.
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1. Brief overview of Immersed Boundary

Methods

1.1. Governing equations

The governing equations of fluid flow are the Navier Stokes Equations (NSE), two of those also

known as the equation for the conservation of mass (1.1), and the conservation of momentum

(1.2). Here, ρ is the volumic mass, u is the speed vector, ⊗ is the tensor product, p is the

pressure, (τ) is the viscous stress tensor, f is the applied external force vector.

∂ρ

∂t
+ div(ρu) = 0 (1.1)

∂ (ρu)

∂t
+ div (ρu⊗ u) = −

−−→
grad(p) + div(τ) + ρf (1.2)

In the aeronautics field, air is considered to be Newtonian fluid. Furthermore, only incom-

pressible viscous flow will be considered. Using these assumptions, the NSE reduce to (1.3) and

(1.4), where P = p
ρ and ν = µ

ρ .

−→
∇ · u = 0 (1.3)

∂u

∂t
+
(
u ·
−→
∇
)

u = −
−→
∇P + ν∇2u (1.4)

1.2. Principle of Immersion Boundary Method

Solving for viscous flow around a solid using DNS requires a very fine mesh around the solid

to be able to capture all scales of turbulence near the solid boundary. Two different kinds of

meshes can be used to do this. A very fine structured mesh can be used throughout the whole

flow domain; this means that regions of flow far away from the solid will have a necessarily

fine discretisation which will require great amounts of computational time. The second method

is to use an unstructured mesh, where the mesh gets progressively finer as you approach the

solid. The disadvantage of this is that unstructured meshes are more computationally expensive

because of the reference table systems they use. Furthermore, unstructured meshes are not well

adapted to high order low dissipative and dispersive FDM.

To avoid these problems, the IBM is designed to make away with the solid all together and

replace it with an artificial forcing acceleration. This means that the boundary of the solid does
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not need to be discretised, and so the meshing problem explained in the previous paragraph is

removed.

Take a domain defined by Ds∪Df ∪ δD where Ds is the solid excluding its boundary δD , Df

is the fluid excluding the boundary of the solid δD.. Let us consider that u defines the velocity

field in the case where the solid is present, and v the velocity field when the solid is replaced by

IBM method accelerations. Therefore, u is the solution to the standard form of NSE given in

(1.3) and (1.4) and is defined on Df ∪ δD only. Also v is the solution to the modified NSE given

in (1.5) and (1.6) and is defined on Df ∪Ds ∪ δD, where Pv = pv
ρv

. C is defined as 0 in Df ∪ δD,

and can take any value in Ds. Furthermore, the first and second order spatial derivatives of C

are 0 on δD.

−→
∇ · v = C (1.5)

∂v

∂t
=

{
0 on Ds ∪ δD(

−v ·
−→
∇
)

v −∇Pv + ν∇2v on Df

(1.6)

Expression (1.6) can be rewritten as a function of γ, such that γ = 1 on Df and γ = 0 on

Ds ∪ δD. Thus we obtain expression (1.7). This is equivalent to adding a forcing acceleration

f defined on Ds ∪Df ∪ δD to the NSE as shown in (1.8). This finally allows us to write f as a

function of v and γ in (1.9).

∂v

∂t
= −γ

((
v ·
−→
∇
)

v +∇Pv − ν∇2v
)

(1.7)

∂v

∂t
= −

(
v ·
−→
∇
)

v −∇Pv + ν∇2v + f (1.8)

⇔ f = (1− γ)
((

v ·
−→
∇
)

v +∇Pv − ν∇2v
)

(1.9)

To prove that IBM methods are mathematically correct, we need to prove the that in the

region Df ∪ δD, v = u,∀t when using the same initial conditions on Df ∪ δD.

1.3. Unicity of the Navier Stokes Equations

1.3.1. Development of the unicity of the Navier Stokes equations

See A for the development leading to the conclusions to the unicity of the Navier Stokes equa-

tions. The difference between the 2 solutions is written as w (x, t) = v (x, t)− u (x, t), and the

pressure field divided by ρ associated to the w is given as Pw

1.3.2. Conclusions to the unicity of the Navier Stokes equations

In A.1, it was shown that u = v on Df ∪ δD under the following assumptions :

1. Pw is not equal to infinity on δD
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2.
(

∂
∂xj

w
)
· n is not equal to infinity δD

3.
∫ t
0 ‖µinf‖dτ is integrable so that K (t) 6= inf

The last condition remains an open problem in the analysis of the Navier Stokes equations

pertaining to the analysis of the strain rate tensor. Indeed, discontinuous velocity fields generated

as solutions of the NSE will lead to non integrable singularities in the eigenvalues of the strain

rate tensor. The first two conditions for the unicity of the NSE depend on pressure and velocity

fields on the boundary δD, and are discussed in the next section.

1.4. Pressure and velocity boundary conditions

The solution u satisfies the NSE (1.3) and (1.4). It has been stated that on δD, u (x, t) = 0.

Thus, by considering steady flow where ∂u
∂t = 0, then the RHS of (1.4) is equal to 0, and (1.4)

reduces to (1.10) on the boundary δD. Note that (1.10) ensures that neither P nor
−→
∇u are

infinite on δD. The objective here is therefore to find the conditions so that v and Pv are also

solutions to (1.10) on δs.

−
−→
∇P + ν

−→
∇2u = 0 (1.10)

Expression (1.8) gives us the governing equation for Pv and v as a function of a forcing

acceleration f . By taking the divergence of (1.8), expression (1.11) is obtained.

By using (1.5) and (1.9), we obtain expression (1.12). Note that δδD (x) is the Dirac delta

function defined such that it is equal to 0 on Ds ∪Df , and mathbfn is the normal to δD.

∂
(−→
∇ · v

)
∂t

= −
−→
∇ ·

(
v ·
−→
∇
)

v −∇2Pv + ν∇2
(−→
∇ · v

)
+
−→
∇ · f (1.11)

∂C

∂t
= −

−→
∇ ·

(
v ·
−→
∇
)

v −∇2Pv + ν∇2C

+ (1− γ)
(−→
∇ ·

(
v ·
−→
∇
)

v +∇2Pv − ν∇2C
)

+ δδD (x) n ·
((

v ·
−→
∇
)

v +∇Pv − ν∇2v
)

(1.12)

Solid Region Looking specifically at the region Ds, i.e. the region where γ = 0, expression

(1.12) simplifies to ∂C
∂t = 0 as the terms from

−→
∇ · f cancel out all other terms on the RHS. This

is true whatever the values for v, Pv or C

Fluid only Region In Df , γ was defined as 1, and δδD (x) = 0. As C = 0 in Df , then
∂C
∂t = 0 as well in Df and so ∂C

∂t = 0 for Ds ∪ Df . In these conditions, (1.12) simplifies to

∇2Pv = −
−→
∇ ·

(
v ·
−→
∇
)

v

9



Solid boundary Here, γ was defined as 0, and δδD (x) = 1. On δD, from the definition of

C the first and second order spatial derivatives of C are equal to 0. Furthermore, ∂C
∂t = 0 for

Df ∪ Ds from the previous two paragraphs. Thus, by deduction, ∂C
∂t = 0 on δD. Also, from

the boundary conditions defined previously, v = 0. Using these two facts, (1.12) simplifies to

n ·
(
∇Pv − ν∇2v

)
= 0. This form ensures that neither Pv nor

−→
∇v are infinite on δD.

Summary of results The three previous paragraphs give three conditions so that neither Pv

nor
−→
∇v to be infinite on δD.

• ∂C
∂t = 0 on Ds

• ∇2Pv = −
−→
∇ ·

(
v ·
−→
∇
)

v on Df

• n ·
(
∇Pv − ν∇2v

)
= 0 on δD

1.5. Surrogate Pressure Field and Surrogate source field

Section 1.4 gives three conditions which must be respected in order to conserve the unicity of

the NSE , i.e u = v. However, writing down these conditions has required the use of Boundary

Conditions which will not be available in the IBM methods, as there will be no boundary

to impose them on. It is therefore necessary to re-obtain the previously expressed conditions

independently of the boundary conditions that were given for δD. This is done by imposing

a surrogate pressure field Ps (x) and source field S (x) defined on Df ∪ Ds ∪ δD in expression

(1.13). In effect, these surrogate pressure and source fields are replacing the effects of the solid

boundary on the fluid flow. Note that both source and pressure fields here are scalars.

∇2Ps = −γ
−→
∇ ·

((
v ·
−→
∇
)

v
)

+ (1− γ)S (1.13)

Solid region In region Ds, it was seen in section 1.4 that no matter the value of the applied

boundary conditions, and therefore no matter the value of the surrogate pressure and source

field, the condition ∂C
∂t = 0 is always kept.

Fluid Region On Df , γ has been set to 1, and therefore (1.13) reduces to ∇2Ps = −γ
−→
∇ ·((

v ·
−→
∇
)

v
)

. Thus, whithout any imposition of boundary conditions, the second condition of

section 1.4 is verified.

Solid boundary On δD, where γ = 0, the source term S (x) must be so that the third

condition of section 1.4 is verified, or in other words that ∇Ps = ν∇2v on δD only. The

integration of expression (1.13) gives (1.14) on Df ∪Ds ∪ δD.

∇Ps =

∫
Df∪Ds∪δD

−γ
−→
∇ ·

((
v ·
−→
∇
)

v
)

+ (1− γ)S (x′)

|x− x′|3
(
x− x′

)
dx′ (1.14)
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Injecting (1.14) into the last condition of section 1.4 gives (1.15). If S (x′) satisfies (1.15) on

δD only, then the unicity of the NSE is conserved, and so the IBM velocity field v is equal to

the standard CFD simulation velocity field u.∫
Df∪Ds∪δD

−γ∇ · (v · ∇v) + (1− γ)S (x′)

|x− x′|3
(
x− x′

)
dx′ = ν∇2v (1.15)

1.6. Conclusion

The derivations from this chapter lead to expression (1.15) which must be satisfied by S (x). If

this is verified, then the gradient of pressure is explicitly set to balance the viscous forces on the

δD.

Chapter 2 will be to explain methods for finding S (x) such that (1.15) is satisfied.
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2. Methods for the computation of the

source function

2.1. Objective

In 1, it was shown that a specific scalar or vector source function S(x), defined on Ds as a vector

and on Df ∪ δD as scalar, is required to satisfy the condition ∇PS = ν∇2v on δD. For this, the

function S(x) must satisfy the equation given in (2.1). Note that the variables v, x′ and x are

all vectors. ∫
DF∪DS∪δD

−γ∇ · (v · ∇v) + (1− γ)S (x′)

|x− x′|3
(
x− x′

)
dx′ = ν∇2v (2.1)

Using the fact that we have γ = 0 on the solid and boundary and γ = 1 on the fluid, the

integral can be separated over an integral over the fluid and the solid to give (2.2).

∫
DS∪δD

S
(
x′
) (x− x′)

|x− x′|3
dx′ = F (x) (2.2)

with F (x) = ν∇2v +

∫
DF

∇ · (v · ∇v)

|x− x′|3
(
x− x′

)
dx′ (2.3)

In 1D, the vector variables given in equation (2.2) simplify to scalar values, and the integral

becomes a line integral. However, when more than one dimensions is used, the integral is a

surface of volume integral, and (2.2) becomes three distinct equations. For more clarity, (2.4) to

(2.6) show the expanded version of (2.2). This form will be especially useful when the 2D and

3D numerical methods for finding the source function are developed.

∫∫∫
DS∪δD

S
(
x′
) (x− x′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
3dz

′dy′dx′ = Fx (x) (2.4)

∫∫∫
DS∪δD

S
(
x′
) (y − y′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
3dz

′dy′dx′ = Fy (x) (2.5)

∫∫∫
DS∪δD

S
(
x′
) (z − z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
3dz

′dy′dx′ = Fz (x) (2.6)

To numerically determine the function S(x), it can be expressed as a linear combination of
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elementary basis distributions in a vector space using two methods : the Dirac source distribution

method and the Lagrange Function distribution method. These are both explained below.

2.2. Dirac source distribution method

2.2.1. General Theory

Using the theory of distributions ([3],[1], [6]), source function S(x) can be linearised as the sum

of Dirac functions and their coefficients. Note that the quality of the linearisation depends on

the intersection of the functional space Ω generated by F (x), and the vector space Φ generated

by
∫
DS∪δD S (x′) (x−x′)

|x−x′|3dx
′; in other words, a linear function with a set number of coefficients

can only match accurately a function with limited irregularity .

2.2.2. Isotropic Pressure

The term S(x) is considered a scalar function where Sx = Sy = Sz = S ; it is therefore natural to

represent it using a distribution of Dirac functions. In other words, the source function becomes

expression (2.7), where δ (x′ − xj) is the Dirac source location j of m positioned at x′j, x′ is the

integration variable from (2.2)

S(x′) =

m∑
j=1

ujδ
(
x′ − xj

)
(2.7)

Injecting this in (2.2), the source condition is rewritten in (2.8). The removal of the integral

is obtained simply by considering that the Dirac source is equal to 0 at every point within the

integral, except at x′ − x′j where it is equal to ∞, but its integral on the whole domain is equal

to 1 [3]. Note that by imposing (2.7) as the source function S (x′), for x = xj, ∀j, |x − xj| will

tend to 0 and therefore the left hand side of (2.8) will tend to infinity.

∫
DS

m∑
j=1

ujδ
(
x′ − xj

) (x− x′)

|x− x′|3
dx′ = F (x)

⇔
m∑
j=1

uj
(x− xj)

|x− xj|3
= F (x) (2.8)

Let us write the variation of Ps due to the source function S(x) as DPs. Using in expression

(1.13), the 3D Green’s solution to equation (2.9), we finally obtain (2.10).

−→
∇2 (DPs) = uj · δ (x− xj)⇔ DPs =

uj
4π|x− xj|

(2.9)

DPs(x) =
m∑
j=1

uj
4π|x− xj|

(2.10)
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2.2.3. Non-Isotropic Pressure

The term S(x) must be a scalar function such that ∇2Ps in expression (1.13) remains a scalar.

Writing S(x) as a vector will have the effect of turning Ps into a vector. Effectively, on Df , Ps

would be a vector of equal components, thus conserving a physical sense. In the region δD∪Ds

where γ = 0, the components of Ps can take any value, and hence the pressure is not isotropic.

The region Ds is not physical, and so it is not shocking to express Ps as non-isotropic in that

region. On δD however, the region is physical, and so having a non-isotropic pressure leads to

a non-physical problem formulation. The solution obtained with the non-isotropic pressure and

the Dirac distribution vector is therefore not adapted to CFD simulation. However, the results

that are obtained by writing are interesting, even if the problem is not dimensioned properly.

In this case, the Dirac distribution is defined such that a component Sx(x) is the sum over j of

the coefficients uxj multiplied by a Dirac delta. In this case, the vector source function S(x) is

given in (2.11). m is the number of source locations.

S(x′) =

m∑
j=1

uj · δ
(
x′ − xj

)
(2.11)

Injecting this in (2.2), the source condition is rewritten in (2.12). The removal of the integral

is obtained simply by considering that for a given direction (or vector component of F (x)), the

Dirac delta integral over the domain is equal to 0 at every point within the integral, except at

x′−x′j where it is equal to 1. It is important to realise that the components of the coefficients of

the Dirac delta only influence the corresponding components of F (x). Note that � symbolises

the term to term product. See [6] for Dirac vector notations.

∫
DS

m∑
j=1

uj · δ
(
x′ − xj

) (x− x′)

|x− x′|3
dx′ = F (x)

⇔


∫
DS

∑m
j=1 ux,jδx (x′ − xj)

(x−x′)
|x−x′|3dx

′∫
DS

∑m
j=1 uy,jδy (x′ − xj)

(y−y′)
|x−x′|3dx

′∫
DS

∑m
j=1 uz,jδz (x′ − xj)

(z−z′)
|x−x′|3dx

′

 =

 Fx (x)

Fy (x)

Fz (x)


⇔

n∑
j=1

uj �
(x− xj)

|x− xj|3
= F (x) (2.12)

Let us write the variation of Ps due to the source function S(x) as DPs. Using the solution

to green’s equation given in (2.9) in expression (1.13), we finally obtain (2.13). Note that this

expression for the pressure is on physical, as the principles of isotropy are not respected. This

method therefore cannot be used in standard CFD simulations.
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 DPs,x(x)

DPs,y(x)

DPs,z(x)

 =


∑m

j=1
ux,j

4π|x−xj|∑m
j=1

uy,j
4π|x−xj|∑m

j=1
uz,j

4π|x−xj|

 (2.13)

2.2.4. Isotropic pressure with Dipole Distribution

Dipole are constructed by placing two Dirac poles of opposite coefficients at infinitely small

distance ε. If the two Dirac sources are placed on the same absciss, then the source will be

radiating primarily along that absciss value. Similarly, if the two Dirac sources have been

placed along the same ordinate, then the sources will radiate primarily along that ordinate.

This is shown in figure 2.1, where it is clear that a Dipole along x affects primarily the x

direction of space, and a Dipole along y the y direction of space. Because Dipoles offer this

sort of directionality, they will improve linearisation accuracy by allowing the directions of the

problem to be more decoupled than with the basic Dirac source distribution method.

Mathematically, the Dipole distribution in one direction is defined as the derivative of the

Dirac distribution along that direction. This means that a Dipole along x is define as
∂δ(x′−x′j)

∂y .

Similarly the Dipole along y is defined as
∂δ(x′−xj)

∂y , the dipole along z is defined as
∂δ(x′−xj)

∂z

The source function S(x) is then written as a scalar as shown in (2.14). The coefficient vectors

u1,u2,u3,u4 correspond to the coefficients of the Dirac monopole, x dipole, y dipole and z

dipole respectively. m is the number of source locations. Note that here we have chosen to

impose 4 different source types at each source location for sake of completeness. This is not a

requirement, and any kind of source can be positioned at any source position; this will however

have an impact on the accuracy of the linearisation.

S(x) =
m∑
j=1

uo,jδ
(
x′ − xj

)
+

m∑
j=1

ux,j
∂δ (x′ − xj)

∂x
+

m∑
j=1

uy,j
∂δ (x′ − xj)

∂y
+

m∑
j=1

uz,j
∂δ (x′ − xj)

∂z

(2.14)

Inserting the expression (2.14) into (2.2) gives (2.15).
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(a) Dipole along x

(b) Dipole along y

Figure 2.1.: Vector field generated by Dipoles

16



∫
DS

∑m
j=1 uo,jδ

(
x′ − xj

) (x− x′)

|x− x′|3
dx′

+

∫
DS

∑m
j=1 ux,j

∂δ (x′ − xj)

∂x

(x− x′)

|x− x′|3
dx′

+

∫
DS

∑m
j=1 uy,j

∂δ (x′ − xj)

∂y

(x− x′)

|x− x′|3
dx′

+

∫
DS

∑m
j=1 uz,j

∂δ (x′ − xj)

∂z

(x− x′)

|x− x′|3
dx′

= F (x) (2.15)

One of the properties of the dipole is given in (2.16). Note that in our case, the domain of

integration with reduce to Ds as there are no sources outside the solid. Finally, using (2.16) in

(2.15) yields (2.17).

∫ ∞
−∞

∂δ (x′ − xj)

∂x
· φ (x) = −

∫ ∞
−∞

δ
(
x′ − xj

)
· ∂φ (x)

∂x
(2.16)

∫
DS

∑m
j=1 uo,jδ

(
x′ − xj

) (x− x′)

|x− x′|3
dx′

−
∫
DS

∑m
j=1 ux,jδ

(
x′ − xj

) ∂ ( (x−x′)
|x−x′|3

)
∂x

dx′

−
∫
DS

∑m
j=1 uy,jδ

(
x′ − xj

) ∂ ( (x−x′)
|x−x′|3

)
∂y

dx′

−
∫
DS

∑m
j=1 uz,jδ

(
x′ − xj

) ∂ ( (x−x′)
|x−x′|3

)
∂z

dx′

= F (x) (2.17)

Finally, using the property of integration of a Dirac delta on (2.17) gives (2.18).

m∑
j=1

uo,j
(x− xj)

|x− xj|3

− ux,j

∂

(
(x−xj)
|x−xj|3

)
∂x

− uy,j
∂

(
(x−xj)
|x−xj|3

)
∂y

− uz,j
∂

(
(x−xj)
|x−xj|3

)
∂z

= F (x) (2.18)

Let us write the variation of Ps due to the source function S(x) as DPs. Using the solution

to green’s equation given in (2.9) in expression (1.13), we finally obtain (2.19).
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DPs(x) =

m∑
j=1

uo,j
4π|x− xj|

+

m∑
j=1

∂
(

ux,j
4π|x−xj|

)
dx

+

m∑
j=1

∂
(

uy,j
4π|x−xj|

)
dy

+

m∑
j=1

∂
(

uz,j
4π|x−xj|

)
dz

(2.19)

2.2.5. Expressions for the 1D case

In the unidimensional case, (2.8) becomes 1 equation only, as shown in (2.20). The Dirac and

dipole distribution methods become one and the same.

n∑
j=1

uj
(x− xj)
|x− xj |3

= F (x) (2.20)

Writing this in matrix form gives (B.2).

2.2.6. Expressions for the 3D case

Isotropic pressure In the three dimensional case, (2.8) becomes 3 equations, as shown in

(2.21).

n∑
j=1

uj
(x− xj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fx (x)

n∑
j=1

uj
(y − yj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fy (x)

n∑
j=1

uj
(z − zj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fz (x) (2.21)

Non-Isotropic pressure In the three dimensionbal case, (2.12) becomes 3 equations, as

shown in (2.22).

n∑
j=1

uxj
(x− xj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fx (x)

n∑
j=1

uyj
(y − yj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fy (x)

n∑
j=1

uzj
(z − zj)√

(x− xj)2 + (y − yj)2 + (z − zj)2
3 = Fz (x) (2.22)
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Dipole Ditribution In the three dimensional case, (2.8) becomes 3 equations, as shown in

(2.23), where |x− x′j |3 =

√(
x− x′j

)2
+
(
y − y′j

)2
+
(
z − z′j

)23
.

n∑
j=1

uo,j
(x− xj)
|x− xj |3

− ux,j
∂
(

(x−xj)
|x−xj |3

)
∂x

− uy,j
∂
(

(x−xj)
|x−xj |3

)
∂y

− uz,j
∂
(

(x−xj)
|x−xj |3

)
∂z

= Fx (x)

n∑
j=1

uo,j
(y − yj)
|x− xj |3

− ux,j
∂
(

(y−yj)
|x−xj |3

)
∂x

− uy,j
∂
(

(y−yj)
|x−xj |3

)
∂y

− uz,j
∂
(

(y−yj)
|x−xj |3

)
∂z

= Fy (x)

n∑
j=1

uo,j
(z − zj)
|x− xj |3

− ux,j
∂
(

(z−zj)
|x−xj |3

)
∂x

− uy,j
∂
(

(z−zj)
|x−xj |3

)
∂y

− uz,j
∂
(

(z−zj)
|x−xj |3

)
∂z

= Fz (x)

(2.23)

2.2.7. Computational Formulation

See B for the computational formulation of the distribution method.

2.3. Finite Element approach

2.3.1. General Theory

Using the theory of finite elements, the source function S(x) can be linearised as the sum of

simple polynomial shape functions and their coefficients. Other functions that polynomials can

be chosen, as long as they are continuous within the element. Thus, S(x) is written as shown in

(2.24), where ui represents the coefficient of the function ei. This method will only be explained

in the 1D case, as higher dimensions will require increasing order shape functions.

S(x′) =

n∑
i=1

uiei
(
x′
)

(2.24)

Injecting the new linearised formulation for S(x) into equation (2.2) we obtain expression

(2.25). The fact that ui does not depend on x′, and the commutativity between the sum and

the integral allows us to rewrite the expression with all the unknowns ui outside of the integral.

Note that for x = x′, the function is not defined. It is therefore imperative that ei (x) = 0 on

Df and δD, or in other words the chosen elements must be contained strictly within the solid.

∫
DS

n∑
i=1

uiei
(
x′
) (x− x′)

|x− x′|3
dx′ = F (x)

⇔
n∑
i=1

ui

∫
DS

ei
(
x′
) (x− x′)

|x− x′|3
dx′ = F (x) (2.25)
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2.3.2. One Dimension Fomulation

In the 1D case, the right hand side reduces to the scalar F (x). Furthermore, the domain of

integration becomes a simple line and the shape functions can therefore be first order polyno-

mials. For a straight line, the boundary of a solid inside the domain reduces to 2 points where

(2.2) must be satisfied. Thus, the problem has 2 degrees of freedom, and so in expression (2.25),

n = 2. This is shown in (2.26).

2∑
i=1

ui

∫ x2

x1

ei
(
x′
) (x− x′)
|x− x′|3

dx′ = F (x) (2.26)

Using only 2 node linear elements, the solid can therefore be represented as a single element.

As stated in 2.24, S(x), is defined along the element by the sum of two first order functions e1

and e2. These are chosen such that e1 = 1 at node 1 of the element and 0 at node 2 of the

element, e2 = 1 at node 2 of the element and 0 at node 1 of the element , and e1 = e2 = 0

outside of the element.

In this case, the chosen functions are given in (2.27). Thus, the formulation for S(x) becomes

: S(x1) = u1 and S(x2) = u2

e1
(
x′
)

=
x2 − x′

x2 − x1

e2
(
x′
)

=
x′ − x1
x2 − x1

(2.27)

Using (2.27), expression (2.25) can be rewritten in matrix form Au = F as shown in (2.28),

where x1 ≤ x′1 ≤ x′2 ≤ x2 to avoid singularities . From there, the solution is simply obtained as

u = F/A. The source function S(x) is then recovered from (2.24). ∫ x′2x′1 x2−x′
x2−x1

x1−x′
|x1−x′|3dx

′ ∫ x2
x1

x′−x1
x2−x1

x1−x′
|x1−x′|3dx

′∫ x′2
x′1

x2−x′
x2−x1

x2−x′
|x2−x′|3dx

′ ∫ x2
x1

x′−x1
x2−x1

x2−x′
|x2−x′|3dx

′

[ u1

u2

]
=

[
F (x1)

F (x2)

]
(2.28)
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3. Numerical Implementation

3.1. Program Architecture

The program for finding S (x) has been written in matlab language for simplicity. For details,

see C.1.

3.2. Proof Of Concept

The proof of concept will be shown in 1D using the Dirac Distribution and FE methods, and

in 2D using the Dirac distribution for isotropic or non isotropic pressure. All tests will be run

using Matlab 2011 on a Core i5 processor with 8Gb ram.

3.2.1. 1D proof of concept

In 1D, the solid is limited to a straight line. In our case, a domain defined by (−5, 5) will be

used, with a solid line stretching from x = −2 to x = 2. The values of F (x) are given at

random as F (−2) = 0.5 and F (−2) = 0.5.

Finite Element approach Note that the integration step is set as δx/10. The plot for F (x)

and A ∗ U is shown in figure C.3. Structured grid space step was automatically calculated as

δx = 2, such that only 2 nodes were available within the solid at x = −1 and x = 1 .The time

required for the execution of the code was 0.64 CPU seconds. The absolute error obtained at

the left boundary point was 5.5510−17 (well below computational accuracy). The error obtained

at the right boundary point was 0. The proof of concept of the 1D Finite Element method has

been validated.

Isotropic pressure Dirac distribution method The plot for F (x) and A ∗ U is shown in

figure C.4. Structured grid space step was automatically calculated as δx = 2, such that only 2

nodes were available within the solid at x = −1 and x = 1 .The time required for the execution

of the code was 0.50 CPU seconds. Thus, for such a simple case, the difference in computational

time is 14%. This is due to the fact that the FE method is required to compute integrals.

This difference in time would become consequent in more complex problems. The absolute

error obtained at the left boundary point was 5.010−17 (well below computational accuracy).

The error obtained the right boundary point was 0. The proof of concept of the 1D isotropic

pressure Dirac distribution method has been validated.

21



3.2.2. 2D proof of concept

The domain is defined as a square with x and y values within (−5, 5).The shape selected for the

2D proof of concept is a cylinder centred at (0, 0) and with a radius of r = 4. The discretised solid

boundary is defined by 100 points. The values for F (x) are defined as follows : Fx (x) = sin (θ)

and Fy (x) = cos (θ) where θ is the trigonometric angle, as shown in figure 3.1. Note that

the function is continuous around the cylindre, in other words, there are no sharp gradient

between the values F (x) of two consecutive points. Furthermore, Fx (x) 6= Fy (x) except at

θ = π/4 + nπ/2.

Figure 3.1.: Value of F (x) as a function of θ for 2D POC

Isotropic pressure Dirac distribution method With a isotropic pressure Dirac distribu-

tion method, 200 sources are required, and therefore at least 200 nodes must be available within

the solid. The plot for the error |F − A ∗ U | and the geometric information are shown in 3.2.

The computation took 1.33 CPU seconds to run, and returned the average errors in the x and

y direction shown in figure 3.2. Note that the condition number of the matrix is of 3.92 ∗ 1017

and the inversion of the matrix returns a a close to singularity warning. This is because of the

high number of source nodes which contribute to bigger matrices to be inverted, and because

the large size of the matrix due to the coupling of the x and y directions. Note that the random

function used in the code means that each run will yield different errors; the variation in error

should however remain small.
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(a) Error |F −A ∗ U | as a function of boundary point

(b) Geometric information

Figure 3.2.: 2D isotropic pressure Dirac distribution proof of concept results
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Non-isotropic pressure Dirac distribution method For the non-isotropic pressure Dirac

distribution method, 100 sources are required, and therefore at least 100 nodes must be available

within the solid. The plot for the error |F −A ∗U | and the geometric information are shown in

3.3. The computation took 0.94 CPU seconds to run, and average errors are shown on 3.3. Note

that the condition numbers of the matrices are of 2.70 ∗ 1013 for the x direction, and 3.74 ∗ 1014

for the y direction. The impact of the more ill conditioned y direction matrix is directly felt in

the y direction error, which is approximately 1 order of magnitude larger than the x direction

error. Differences in conditioning of x and y direction are due to random positioning of sources;

in other words, the source pattern is more symmetric with respect to the boundary for the y

axis symmetry.

Because there are less sources here than with the isotropic pressure Dirac distribution method,

and because the sources are very directive and allow the decoupling of the directions of the

problem, the condition number is closer to 1 and the matrix is better conditioned. Matrix size

and decoupling lead to an error which is on average 1.5 orders of magnitude smaller than with

the isotropic pressure Dirac distribution method in this test case. Note that the random function

used in the code means that each run will yield different errors; the variation in error should

however remain small.

Isotropic pressure Dipole distribution method For the Dipole distribution method,

Int (200/3) + 1 source locations are required as three independent source types are positioned

at each source location. Therefore, at least 67 nodes must be available within the solid, the last

of which will only bear two independent source types . The plot for the error |F − A ∗ U | and

the geometric information are shown in figure 3.4. The computation took 1.35 CPU seconds

to run, and the average error is shown in figure 3.4. Note that the condition number of the

matrix is of 1.07 ∗ 1018 and Matlab returns a near singular matrix error. The condition number

is similar to the isotropic Dirac distribution method because of the large matrix size. However,

the Dipoles create a nearly decoupled problem, and so the error is close to the one obtained with

the non-isotropic vector Dirac method. Furthermore, the wider variety of sources allows a more

accurate linear combination of the function F (x) in this specific case. Note that the random

function used in the code means that each run will yield different errors; the variation in error

should however remain small.

3.2.3. Conclusions

The isotropic pressure Dirac distribution method is dimensionally correct for use in CFD compu-

tations, but ensues important computational times and large errors due to bad matrix condition-

ing and inaccurate linear combination. The non-isotropic pressure Dirac distribution method has

good results, with a lower calculation time, and higher accuracy. This is due to the decoupling

of the dimensions of the problem, and smaller matrix sizes. However, this method introduces a

dimensioning problem when using it within CFD computations. The Dipole distribution method

is a compromise between the two previous methods. The near-decoupling of the dimensions of

the problem, and the wide variety of source types, gives a low error. However, because of a large
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(a) Error |F −A ∗ U | as a function of boundary point

(b) Geometric information

Figure 3.3.: 2D Non-isotropic pressure Dirac distribution method proof of concept results
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(a) Error |F −A ∗ U | as a function of boundary point

(b) Geometric information

Figure 3.4.: 2D isotropic pressure Dipole distribution method proof of concept results
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matrix size, the condition number of the matrix and computational time are high. This method

is dimensionally correct for use in CFD computations and is recommended.

For more comparisons between the different linear combination methods and test cases, please

see appendix D.
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4. Conclusion

IBM methods up until now hod no explicit balancing of viscous forces and pressure gradient at

the boundary of the solids, and were limited to a formal 2nd order accuracy. The imposition

of a new surrogate field S(x) corrects this. S(x) is determined through linear combinations of

elementary basis distributions. As a rule of thumb, it is recommended to use the isotropic pres-

sure dipole distribution method for CFD computations, as it offers the good accuracy of linear

combination, and is dimensionally adapted to CFD. The accuracy of this linear combination

of S(x) is however highly dependant on the irregularity of the F (x) function generated by the

velocity and pressure fields obtained through the CFD simulation. Furthermore, the calculation

time can become very important when using very fine discretisations on the solid boundary.

The attempt at implementing in a CFD code the explicit balancing of the pressure gradient

and viscous forces on the boundary gave mixed result. With real flow data used for F (x), the

linear combination coefficients of the source function S (x) were identified accurately. However,

the pressure values thus obtained within the solid proved to be of order of magnitude 1012

approximatly. Although this is not problematic analytically, as the inside of the solid is not

physical, this prevented the CFD computations from converging. A minimisation should there-

fore be imposed on the magnitude of the obtained pressure variations, and perhaps on their

derivatives with respect to space.

The methods described here attempt to find u by solving Au = F exactly. Because this is

not always possible, this leads to matrices with very high condition numbers. Furthermore, no

condition is set on the amplitudes of Ps. This is problematic as high amplitudes of Ps might be

difficult to manage for a CFD solver. To avoid all this, the problem should have been written

as a minimisation of the error ε defined as the sum of the squares of the absolute error, or if

written in matrix form, as ε = (Au− F)T (Au− F). As the sum of the squared amplitudes of

the vector Ps must also be minimised, then we obtain ε = (Au− F)T (Au− F)+α
(
BuT

)
(Bu)

where α is the importance given to keeping small amplitudes for Ps, and B is the pressure

construction matrix which can be obtained from (2.19), (2.10), or (2.13). The error is minimal

when ∇ε = 0 ⇔ 2At (Au− F) + 2αBTBu = 0. From there, the solution is obtained as u =[
ATA + αBTB

]−1
ATF. Let us define m and n the number of terms in u and F respectively.

If m = n and α = 0, then we are back to the methods presented in this report. However, if

m > n, then α can take another value than 0, and the amplitudes of Ps will be minimised, thus

becoming adequate for CFD computations.

This minimisation techniques was attempted in a flow around a square for Re = 150 and δt =

0.005 with the CFD code Incompact3D. This was done with the help of Alexandre Iliopoulos.

The results after 2000 iterations are given in figure 4.1. The small variations in pressure and

28



velocity in the domain conform with what was expected. Indeed, the variation of pressure

imposed should only affect the flow sufficiently to allow an increase in the formal order of

accuracy of the results. The results are very promising, and the new order of accuracy obtained

needs to be calculated to determine the impact of balancing the pressure gradient and the viscous

forces at the boundary of the solid in IBM methods.

(a) Pressure field

(b) Variation in x vecolicity field between results from the CFD simulation with
or without pressure gradient and viscous forces equilibrium

Figure 4.1.: Results from the implementation of pressure gradient and viscous force balancing
at the boundary, with minimisation of the amplitudes of the imposed variations of
P
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A. Unicity of the Navier Stokes Equations

Determining the conditions under which v = u, ∀t is equivalent to determining the conditions

under which the unicity of the Navier Stokes equations is verified. Consider that u is the solution

to the standard form of NS given in (1.3) and (1.4), and that v is a solution to the equations

(1.7) and (1.5). Both solutions have the same initial condition v (x, 0) = u (x, 0) on Df and

v (x, 0) = u (x, 0) = 0 on δD. Also, note that for this problem u (x, t) = 0, ∀t on δD, and
∂v
∂t = ∂u

∂t = 0, ∀t on δD ∪Df as this is steady flow.

Using the method explained in [2] and used in [7], the difference between the 2 solutions

is written as w (x, t) = v (x, t) − u (x, t). The objective is to show that, ∀x,∀t on Df ∪ δD,

w (x, t) = 0. Writing the total kinetic energy K (t) for w gives expression (A.1). Note that

(A.1), being an energy, is strictly greater or equal to 0. So, by replacing u and v in (A.1), and

finding a form (A.1) where K (t) ≤ 0, then we shall have K (t) = 0⇔ w (x, t) = 0.

K (t) =

∫
Df

|w (x, t) |2dx (A.1)

A.1. Kinetic energy K (t)

To begin, lets express the NS equation of momentum (1.4) for w (x, t) by substracting the

NS momentum equation for u from the one for v. Note that from the non linearity of the

NS momentum equation:
(
v ·
−→
∇
)

v −
(
u ·
−→
∇
)

u =
(

(v − u) ·
−→
∇
)

(v − u) +
(

(v − u) ·
−→
∇
)

u +(
u ·
−→
∇
)

(v − u). Using this, expression (A.2) is obtained.

∂w

∂t
= −

((
w ·
−→
∇
)

w +
(
w ·
−→
∇
)

u +
(
u ·
−→
∇
)

w
)

−
−→
∇Pw + ν∇2w (A.2)

From there, the kinetic energy expression for K (t) is obtained by dot multiplying w with

(A.2) and then integrating over the fluid domain Df . For sake of clarity, each of the terms from

above will be calculated in an independent paragraph.

First Term Lets begin by looking at the first term (A.3). Using the fact that 1
2

−→
∇ ·
(
w|w2|

)
=

w ·
(
w ·
−→
∇
)

w +
−→
∇ · w from the rules of differentiation of a product, and that

−→
∇ · w = 0 in

Df ∪ δD for incompressibility, the first nabla group in the bracket can be transformed. Using a

similar idea,
−→
∇ · (w|wu|) = w ·

(
u ·
−→
∇
)

w +
−→
∇ ·w from the rules of differentiation of a product.
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As
−→
∇ ·w = 0 in Df ∪ δD because of incompressibility, the third nabla group in the bracket can

be transformed. Thus we obtain expression (A.4) for the first term (A.3).

∫
Df

w ·
((

w ·
−→
∇
)

w +
(
w ·
−→
∇
)

u +
(
u ·
−→
∇
)

w
)
dx (A.3)

≡ 1

2

∫
Df

−→
∇ ·

(
w|w2|

)
dx

+

∫
Df

w ·
(
w ·
−→
∇
)

udx

+

∫
Df

−→
∇ · (w|wu|) dx (A.4)

Second Term Lets turn our attention to the term
∫
Df

w ·
−→
∇Pwdx. Notice that, by using the

methods for the differentiation of a product, one can write that
−→
∇ · (Pww) =

(
w ·
−→
∇
)
Pw +

Pw
−→
∇ ·w. By using the NS equation for the conservation of mass

−→
∇ ·w = 0. So finally expression

(A.5) is obtained. ∫
Df

w ·
−→
∇Pwdx =

∫
Df

−→
∇ · (Pww) dx (A.5)

Third Term We are now looking at
∫
Df
νw ·

−→
∇2wdx. The objective here is to get rid of the

Laplacien. Using the fact that ∂
∂xj

(
w ∂
∂xj

w
)

= w ·
−→
∇2w +

(−→
∇w

)2
, we obtain expression (A.6).

∫
Df

νw ·
−→
∇2wdx = ν

(∫
Df

∂

∂xj

(
w

∂

∂xj
w

)
dx−

∫
Df

(−→
∇w

)2
dx

)
(A.6)

Left Hand Side At the moment, the obtained left hand side of (A.2) is
∫
Df

w · ∂w∂t dx. By

using the identity ∂w2

∂t = 2w ∂w
∂t , expression (A.7) is immediately obtained.∫

Df

w · ∂w

∂t
dx =

1

2

d

dt

∫
Df

|w2|dx (A.7)

Final expression for K (t) Using expressions (A.3) through (A.7), and injecting them into

(A.2) gives expression (A.8).
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d

dt
K (t) = −

∫
Df

−→
∇ ·

(
w|w2|

)
dx−

∫
Df

w ·
(
w ·
−→
∇
)

udx−
∫
Df

−→
∇ · (w|wu|) dx

−
∫
Df

−→
∇ · (Pww) dx

+ ν

(∫
Df

∂

∂xj

(
w

∂

∂xj
w

)
dx−

∫
Df

(−→
∇w

)2
dx

)
(A.8)

Using Boundary Conditions Using Green’s theorem (
∫∫
D

−→
∇ · FdA =

∮
c F · nds) , the

pressure term on the RHS of (A.8) gives expression (A.9), the first integral of the viscosity term

gives expression (A.10), the first term of the RHS gives (A.11) and the third term of the RHS

gives (A.12).

∮
δD (Pww) · nds (A.9)∮
δD

(
w

∂

∂xj
w

)
· nds (A.10)∮

δD

(
w|w2|

)
· nds (A.11)∮

δD (w|wu|) · nds (A.12)

Since v (x, 0) = u (x, 0) = 0 on δD, and ∂v
∂t = 0 on δD then w (x, t) = 0, ∀t on δD. Assuming

that neither Pw or
(

∂
∂xj

w
)
· n are equal to infinity on δD, then (A.9) through (A.12) are all

equal to 0. Thus, (A.8) simplifies to (A.13).

d

dt
K (t) = −

∫
Df

w ·
(
w ·
−→
∇
)

udx− ν
∫
Df

(−→
∇w

)2
dx (A.13)

Strain rate Tensor Consider s the strain rate tensor of u such that sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

As s is symmetric then sij = ∂ui
∂xj

. thus, we can write
(
w ·
−→
∇
)

u = w · s. Furthermore,

by writing that ‖µinf‖ is the maximum eigenvalue of s at any time t and for all space, then

| −
∫
Df

w ·
(
w ·
−→
∇
)

udx| ≤ ‖µinf‖
∫
Df
|w|2dx , and so the inequality (A.14) is obtained from

(A.13).

d

dt
K (t) ≤ ‖µinf‖

∫
Df

|w|2dx− ν
∫
Df

(−→
∇w

)2
dx (A.14)

Poincarré inequality The Pointcarré inequality is used to get rid of the
(−→
∇w

)2
term from

(A.14). Consider that Df is a domain where −4 is a strictly positive self-adjoint linear op-

erator who’s smallest eigenvalue λ ≥ 0. In this case, The Pointcarré inequality states that
1
λ

∫
Df

(−→
∇w

)2
dx ≥

∫
Df
|w|2dx. By using this and (A.1), expression (A.15) is obtained. The
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proof for the Pointcarré inequality is given in [2], theorem 2.1 p.36.

d

dt
K (t) ≤ 2‖µinf‖K (t)− 2νλK (t) (A.15)

Solving the ODE from (A.15) gives expression (A.16). Note that the integral appears inside

the exponential as ‖µinf‖ depends on time. It was said before that w (x, 0) = 0, hence K (0) = 0.

Thus, (A.15) leads to K (t) ≤ 0. However, from (A.1), it is clear that K (t) ≥ 0 as K (t) is an

energy term. the only solution is therefore K (t) = 0,∀t.

K (t) = K (0) exp

(
−2tνλK (t) + 2

∫ t

0
‖µinf‖dτ

)
(A.16)
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B. Distribution method computational

formulation

B.1. One Dimension

The source function S (x′) will be determined numerically, so the domain and the solid are both

discretised. More specifically, the boundary values F (x) are discretised such that F (x) is given

in (B.1). Note that there are as many discrete boundary points as there are imposed Dirac

sources. Furthermore, in the one dimensional case, the solid is necessarily a segment and it has

two boundary points only.

F (x) =

[
F (x1)

F (x2)

]
(B.1)

Now rewriting the right hand side of (2.20) as the matrix form Au = F, and using (B.1) we

obtain (B.2) x1 ≤ x′1 ≤ x′2 ≤ x2 to avoid singularities.[
x1−x1
|x1−x1|3

x1−x2
|x1−x2|3

x2−x1
|x2−x1|3

x2−x2
|x2−x2|3

][
u1

u2

]
=

[
F (x1)

F (x2)

]
(B.2)

The solution u is then easily obtained from (B.2) by writing u = F
A . The source function

S (x′) can then be obtained from (2.7).

B.2. Three Dimensions

In three dimensions, each point on the boundary of the solid bears three conditions that need

to be satisfied by (2.12) and uj has three values. Equation (B.3) show the right hand side of

(2.21) and (2.22) after discretisation and in matrix form.

Fx (x) =


Fx (x1)

Fx (x2)

.

.

Fx (xn)

 , Fy (x) =


Fy (x1)

Fy (x2)

.

.

Fy (xn)

 , Fz (x) =


Fz (x1)

Fz (x2)

.

.

Fz (xn)

 (B.3)
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B.2.1. Isotropic pressure Dirac distribution

Rewriting (2.21) as the matrix form

Axu = Fx

Ayu = Fy

Azu = Fz

And using (B.3) we obtain (B.4). Note that to have a well conditioned problem, the size of u

must be equal to the size of Fx + Fy + Fz. Thus here we must have m = 3n.


x1−x1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... x1−xm√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
xn−x1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... xn−xm√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 u1

.

um

 =

 Fx (x1)

...

Fx (xn)

(B.4)


y1−y1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... y1−ym√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
yn−y1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... yn−ym√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 u1

.

um

 =

 Fy (x1)

...

Fy (xn)

(B.5)


z1−z1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... z1−zm√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
zn−z1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... zn−zm√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 u1

.

um

 =

 Fz (x1)

...

Fz (xn)

(B.6)

The solution u is then easily obtained from (B.4) by writing u = F
A . The source function

S (x′) can then be obtained from (2.7).

B.2.2. Non-isotropic pressure Dirac distribution

Rewriting (2.22) as the matrix form

Axux = Fx

Ayuy = Fy

Azuz = Fz

And using (B.3) we obtain (B.7). Note that for the problem to be well dimensioned, we must

have the size of ux equal to the size of Fx and so on. Thus here we have m = n.
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
x1−x1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... x1−xm√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
xn−x1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... xn−xm√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 ux,1

.

ux,m

 =

 Fx (x1)

...

Fx (xn)

(B.7)


y1−y1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... y1−ym√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
yn−y1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... yn−ym√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 uy,1

.

uy,m

 =

 Fy (x1)

...

Fy (xn)

(B.8)


z1−z1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... z1−zm√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
zn−z1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... zn−zm√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3


 uz,1

.

uz,m

 =

 Fz (x1)

...

Fz (xn)

(B.9)

The solution u is then easily obtained from (B.7) by writing ux,y,z =
Fx,y,z

Ax,y,z
. The source

function S (x′) can then be obtained from (2.11).

B.2.3. Isotropic pressure Dipole Distribution

Rewriting (2.23) as the matrix form

Axu = Fx

Ayu = Fy

Azu = Fz

And using (B.3) we obtain (B.10). Note that for the problem to be well dimensioned, we must

have the size of u =


uo

ux

uy

uz

 equal to the size of Fx + Fy + Fz and so on. Thus here we must

have m = 3
4n.
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[
A1,x A2,x A3,x A4,x

]



 uo,1

.

uo,m


 ux,1

.

ux,m


 uy,1

.

uy,m


 uz,1

.

uz,m





=

 Fx (x1)

...

Fx (xn)

 (B.10)

[
A1,y A2,y A3,y A4,y

]



 uo,1

.

uo,m


 ux,1

.

ux,m


 uy,1

.

uy,m


 uz,1

.

uz,m





=

 Fy (x1)

...

Fy (xn)

 (B.11)

[
A1,z A2,z A3,z A4,z

]



 uo,1

.

uo,m


 ux,1

.

ux,m


 uy,1

.

uy,m


 uz,1

.

uz,m





=

 Fz (x1)

...

Fz (xn)

 (B.12)

Where the expression for Ay (y is chosen as the example direction) are given in (B.13).
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A1,y =


y1−y1√

(x1−x1)2+(y1−y1)2+(z1−z1)2
3 ... y1−ym√

(x1−xm)2+(y1−ym)2+(z1−zm)2
3

. . .
yn−y1√

(xn−x1)2+(yn−y1)2+(zn−z1)2
3 ... yn−ym√

(xn−xm)2+(yn−ym)2+(zn−zm)2
3

 (B.13)

A2,y = −


∂
(

(y1−y1)

|x1−x1|3

)
∂x ...

∂
(

(y1−ym)

|x1−xm|3

)
∂x

. . .

∂
(

(yn−y1)

|xn−x1|3

)
∂x ...

∂
(

(yn−ym)

|xn−xm|3

)
∂x

 (B.14)

A3,y = −


∂
(

(y1−y1)

|x1−x1|3

)
∂y ...

∂
(

(y1−ym)

|x1−xm|3

)
∂y

. . .

∂
(

(yn−y1)

|xn−x1|3

)
∂y ...

∂
(

(yn−ym)

|xn−xm|3

)
∂y

 (B.15)

A4,y = −


∂
(

(y1−y1)

|x1−x1|3

)
∂z ...

∂
(

(y1−ym)

|x1−xm|3

)
∂z

. . .

∂
(

(yn−y1)

|xn−x1|3

)
∂z ...

∂
(

(yn−ym)

|xn−xm|3

)
∂z

 (B.16)

The solution u is then easily obtained from (B.7) by writing u = F
A . The source function

S (x′) can then be obtained from (2.11).
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C. Numerical Implementation

C.1. Program Architecture

The program for finding S (x) has been written in matlab language for simplicity. It is divided

into three parts :

• Running parameters definition : This is where the user defines the running parameters

which are specific to the problem at hand

• Initialisation and discretisation : This part is common for 1D and 2D problems and for

any type of method used. It simply discretises the domain and the boundary of the solid

based on the requirements of the user. It also assigns the inputted values for the boundary

points.

• Solvers : There are two solvers present in the program at the moment. The 1D solver

is capable of using either Finite Element based methods, or Dirac Distribution based

methods. The 2D solver, however, is only capable of using Dirac distribution methods

for isotropic and non isotropic pressure fields, with monopole or dipole distributions. The

Finite Element method could be implemented, but would require good knowledge of 2D

element construction.

The Architecture of the program is shown in C.1 and C.2.

C.1.1. Defining Running parameters

The parameters that need to be defined by the user are the following.

• The method used for finding S (x). The variable ’method’ indicates whether the user uses

the Dirac distribution method (method = 1) or the finite element discretisation method

(method = 2). Note that currently, the finite element method is only supported in 1D.

In the case of Dirac distributions for 2D problems, the user can select to use a isotropic

pressure solver with monopoles, (dirac type = 1) or a non-isotropic pressure solver with

monopoles (dirac type = 2), or an isotropic pressure solver with dipoles (dirac type = 3).

• The size of the domain of fluid study (xmi,xmax etc). Note that this determines the

working domaine of the program, and is not necessarily the fluid simulation domain. The

only condition imposed in the defined domain size is that the solid be contained within

the domain.

41



Part 1 : Running paramteres definition

Figure C.1.: Program Architecture Diagram : Parts 1 and 2
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Figure C.2.: Program Architecture Diagram : Part 3
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• The dimension of the problem through the variable ’dimension’ : 1 = 1D, 2 = 2D etc.

• The number of boundary points required to discretise the boundary. Note that each

boundary point requires assigned values of F (x) which would have been obtained through

the CFD simulation. Furthermore, the zone inside the solid will be determined through

those boundary points. Because of this, a 2D simulation requires a minimum of 3 boundary

points to give results.

In the case of open solids, such as a channel flow simulation, it is recommended to trans-

formed the open solids into closed solids. Thus, for the case of channel flow, the two walls

would be represented by 2 closed solid rectangles.

• The source position is determined by the variable ’source position’. If the variable is equal

to 1, the sources are set within the solid shape. This is adapted to any closed solid that

does not intersect itself. If the variable is equal to -1, the points are set outside the solid.

• The shape of the solid within the fluid through the variable ’shape’. The program supports

any kind of of closed shape that does not intersect itself. For the moment, the rectan-

gle, cylindre and channel shape have already been predefined. Any new shape must be

defined so that the coordinates of the points on the boundaries of the shape are given

in anticlockwise order (trigonometric direction). This is done in the function BC coord

input.m .

• The value of F (x) can be defined through the variable ’function type’. Different func-

tions have already been predefined and are accessible through the integer value given to

’function type’. Additional values can be in-putted in the function RHS.m

• The variable ’show plots is set to 1 if the user wants to see the geometrical plot and

absolute error plots. When executing batch tests, it is recommended to be set to 0 for

speed.

• The variable ’geom correction’ is increased to increase the refinement of the structured

grid mesh, and thus have a greater number of nodes inside the solid. See C.1.4 for details.

C.1.2. Positioning of elements

In the case of the method based on Finite elements, the elements must necessarily lie within

the solid, and away from the boundary. Indeed, the values taken by the integral of the shape

function over the element will tend to infinity at various points, as shown in C.3. Infinite values

close to boundaries will lead to important calculation errors for S (x).

C.1.3. Positioning of Dirac sources

In theory Dirac sources are equal to infinity only at the exact position of the source, are are equal

to 0 everywhere else. In practice, an important region around the Dirac source continues to show

the presence of the discontinuity. This is shown in figure C.4 where the sources were positioned

44



Figure C.3.: Value of LHS on the domain for 1D FE method

at x = −1 and x = 1 respectively. It is therefore very important to keep the Dirac sources and

their discontinuity away from the boundary of the solid. This will be even more important if

points of LHS inside the solid are required for interpolation purposes. Also, the sources must be

positioned away from the grid points where pressure will be calculated, to avoid potential peaks

of the pressure variation in the CFD code. Lastly, for 2D or 3D problems, positioning the same

types of sources symmetrically with respect to the the solid, or too close together, will cause the

matrix to be ill conditioned. This is because the base size of the vectorial space, and therefore

its dimension, generated by the source distributions will decrease. Thus the rank of the matrix

will decrease and the matrix will become ill-conditioned. To avoid this, each source is placed

at a random small distance (maximum value of δx/10) of a different node of a structured grid

within the solid. Figure C.5 shows the positioning of sources within a circle in a 2D case. Note

how all the sources are slightly off from the structure grid nodes because of the random shift.

C.1.4. Discretisation

Function ’discretisation.m’ is responsible for the discretisation of the boundary, and of the

working domain. To optimize the speed of the calculation of S (x), the domain structured

grid space step is defined automatically using the chosen number of points on the boundary.

Of course, to determine exactly the number of points within a complicated shape, like a rose

petal for example, would require the program to iteratively generate new meshes with different

numbers of total nodes, then count the nodes within the solid to determine if there are enough

to place all sources. This is computationally costly. Instead, the program simply looks at the

45



Figure C.4.: Value of LHS on the domain for 1D Dirac distribution method

Figure C.5.: Position of solid and source points on the domain grid for a 2D isotropic pressure
Dirac distribution method
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max and min values of the solid along the x, y, and z directions. It then considers how many

domain structured grid nodes are required to fill a parallelepiped of that size with a enough

nodes for each source, whilst keeping the space step in each direction approximately the same.

Of course, shapes with less inner volume for the same max dimension than the rectangle will

require a finer mesh. To account for this, the correction factor ’geom correction’ can be set

by the user to correct this with the help of the geometric plots. A value of 1.25 is adapted to

cylinders.

C.1.5. Solid Mask Generator

The solid mask generator creates a matrix where each cell corresponds to a domain node. If

the cell value is 1, the domain structured mesh node is within the solid. Consider here that the

points on the boundary are sequentially given by following the trigonometric rotation direction.

A node is determined to be within the solid by using vector calculus. The two closest points

(point 1 and 2) on the boundary are determined for each node (A) of the structure grid. Then

, the vector product of vector 1 and vector 2 defined by A and point 1 , and A and point 2

respectively is calculated. If the vector product is positive, then the shift from vector 1 to vector

2 is done in the trigonometric (anticlockwise) direction and thus the node A is within the solid.

If the product is negative, then the point is outside of the solid. This method only works if the

points on the boundary are given in the trigonometric order, and if the solid does not intersect

itself.
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D. Test Cases

D.1. Solid Cylinder

The following battery of tests look at the difference between the three distribution methods

specifically for a Cylinder. The use of non-isotropic or isotropic pressure distributions will

impact calculation time, and calculation error. Note that the relative error given here is defined

as RE =

√
(Fx−LHSx)

2+(Fy−LHSy)
2

(Fx+Fy)
2 .

D.1.1. Calculation error due to RHS functional space

As stated before, the distribution method is a linearisation of the source function S (x). There-

fore, the accuracy of the results depends on the capacity of the integral of the linear combination

to accurately capture the function F (x). To show this, the periodic function F (x) will be de-

fined as shown in figure D.1. All other running parameters remain the same as for the 2D proof

of concept.

Figure D.1.: Fourier function satisfied by F (x)

The simulation took 1.28 and 0.92 CPU seconds for the isotropic and the non isotropic pressure

cases respectively. The results are given in figures D.2 through D.4. As expected, the decoupling

offered by the non-isotropic method gives the lowest relative error. This is shortly followed by
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the isotropic pressure Dipole distribution method which offers near decoupling of the dimensions

of the problem, and a wider variety of sources.

Figure D.2.: Fourier function error results for the isotropic pressure Dirac distribution method

D.1.2. Calculation time

Figure D.5 shows the variation of calculation time with the number of boundary points. By

considering that the number of points on the boundary is N , the size of the matrix to be

inverted will be 2N ∗ 2N = 4N2 terms where 2 corresponds to the number of dimensions for the

isotropic pressure Dirac distribution cases. Similarly, the size of each matrix to be inverted will

be N ∗N = N2 terms for the non-isotropic pressure Dirac distribution method, making a total

of 2N2 terms for both matrices. In 3D, the number of terms for the scalar and non-isotropic

pressure Dirac distribution methods would be 9N2 and 3N2. Because of this difference in the size

of matrices to be inverted, the non-isotropic pressure Dirac distribution method is on average 4

times faster than the isotropic pressure Dirac distribution method. Considering that the source

function S (x) will need to be computed at each iteration of the CFD code, the advantage in

using non-isotropic pressure Dirac distribution methods for improving computational speed is

important if the matrix A varies. Note that the matrix A will not vary if the source positions

remain constant throughout the iterations; in this case, the matrix A needs only to be inverted

at the first iteration. Note that the difference in time between the two isotropic methods comes

from mesh operations only, and not from the matrix inversion; indeed, the Dipole distribution

method requires fewer source locations, and therefore a coarser mesh.
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Figure D.3.: Fourier function error results for the non-isotropic pressure Dirac distribution
method

Figure D.4.: Fourier function error results for the isotropic pressure dipole distribution method
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Figure D.5.: Claculation time as a function of the number of boundary points for 2D simulations.

D.1.3. Calculation error due to sharp gradients in F (x)

Calculation error is affected when sharp gradients are introduced between the values of F (x) at

consecutive boundary points. To show this, the same parameter as in the 2D proof of concept

are used. The values of F (x), however, are set as follows : Fx (x) = θ3 and Fy (x) = cos (θ)

where θ is the trigonometric angle, and θ = 0 is on th epositive x axis of the cylinder. Thus,

Fx (x) = θ3 is not periodic. Figures D.6 through D.8 show the calculation error obtained. There

are two things to be noted :

• Sharp gradient in F (x) increases the calculation error

• In the isotropic pressure Dirac distribution case, the perturbation caused by a large gra-

dient in the x direction is felt also in the results for the y direction. There is therefore

coupling between the two directions. This is because in the isotropic pressure Dirac distri-

bution case, each term of U acts on a Dirac source that influences every direction. Thus,

each term of U influences every direction, and only one matrix is inverted to calculate U .

In the non-isotropic pressure Dirac distribution case however, the perturbation caused by

a gradient in the x direction only influences the error along the x direction. Indeed, there

is no coupling between the directions of the problem with this method, as each direction

is solved for independently by inverting a separate matrix. Furthermore, the error caused

by the sharp gradient is 9 orders of magnitude smaller than with the isotropic pressure

Dirac distribution method. The Dipole distribution performs better than the isotropic

pressure Dirac distribution method because it allows a near decoupling of the direction of

the problem. The impact of the sharp gradient is however felt on the error in both the x

and y direction. The error is also considerably higher than with the non-isotropic pressure

Dirac distribution method.
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Figure D.6.: 2D result error for sharp gradients in F (x) with isotropic pressure Dirac distribution

D.2. Influence of the number of points

The error obtained will depend greatly on F (x), and can be improved by increasing the number

of sources. Indeed, consider that F (x) belongs to a specific functional space Ω, and that the n

sources used to represent it generate a vectorial space of base n, Φ. The bigger n, the bigger

the intersections of the Ω and Φ, and therefore the bigger the chance of finding F (x) at that

intersection and reducing the error. However, by increasing the number of sources and therefore

of boundary points, the calculation is more computationally costly. Also, a higher density of

sources increases the risk of two sources merging together because of a too small distance between

them. Furthermore, randomly generated symmetry patterns could start to appear. These last

two effects will reduce the vector base generated by the source function, and therefore increase

matrix conditioning and calculation error. Thus, to improve the conditioning of the matrix, the

number of sources should be reduced, but to improve the obtained error, the number of sources

should be increased. There is therefore an optimum which can be calculated. As a rule of thumb

however, increasing the number of boundary points will lead to higher accuracy, at the cost of

computational time.

D.3. Channel flow

The channel structure is different from previously tested configurations a two solids are required

to represent both walls. Thus, there are two areas where sources will be positioned.
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Figure D.7.: 2D result error for sharp gradients in F (x) with non-isotropic pressure Dirac
distribution

Figure D.8.: 2D result error for sharp gradients in F (x) with isotropic pressure Dipole
distribution
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For this test case, the domain will set as (−5, 5) along the x direction and (−5, 5) along the

y. The top wall solid will be defined along the x direction as (−5, 5), and along the y direction

as (3, 5). The bottom wall solid will be defined similarly for the x direction, and as (−5,−3)

for the y direction. The number of boundary points is set to be 200, amounting to 100 points

on each wall of the channel. The boundary value for F (x) is defined such that Fx (x) = sin (θ)

and Fy (x) = cos (θ) where θ is the trigonometric angle . It is defined such that θ = 0 on the

first point of the top segment of the top solid, θ = π is the last point of the right segment of the

top solid, θ = π − δθ is the first point of the top segment of the bottom corner of the top solid,

and θ = π − δθ is the top right corner of the bottom solid, and θ = 2π is the last point of the

right segment of the bottom solid. The vector plot for F (x) as a function of boundary point is

shown in

Figure D.9.: Vector plot of F (x) for each boundary point

The results of the simulation for both isotropic and non isotropic Dirac and Dipole distribution

methods are given in figures D.10 through D.12. Note that the relative error given here is

defined as RE =

√
(Fx−LHSx)

2+(Fy−LHSy)
2

(Fx−Fy)
2 . The computational time was 1.70 CPU seconds

for the isotropic pressure distribution method, and 1.15 for the non-isotropic pressure Dirac

distribution method.This test case clearly shows the limitations encountered in a potential CFD

configuration, because of the coupling present between the x and y directions of the problem for

the isotropic pressure Dirac and dipole distribution methods.
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(a) Relative error as a function of boundary point

(b) Geometric information

Figure D.10.: Channel flow results for the isotropic pressure Dirac distribution method
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(a) Relative error as a function of boundary point

(b) Geometric information

Figure D.11.: Channel flow results for the non-isotropic pressure Dirac distribution method
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(a) Relative error as a function of boundary point

(b) Geometric information

Figure D.12.: Channel flow results for the isotropic pressure dipole distribution method
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